Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Fungal Genet Biol ; 70: 42-67, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25011008

RESUMO

Fungi have the capacity to cause devastating diseases of both plants and animals, causing significant harvest losses that threaten food security and human mycoses with high mortality rates. As a consequence, there is a critical need to promote development of new antifungal drugs, which requires a comprehensive molecular knowledge of fungal pathogenesis. In this review, we critically evaluate current knowledge of seven fungal organisms used as major research models for fungal pathogenesis. These include pathogens of both animals and plants; Ashbya gossypii, Aspergillus fumigatus, Candida albicans, Fusarium oxysporum, Magnaporthe oryzae, Ustilago maydis and Zymoseptoria tritici. We present key insights into the virulence mechanisms deployed by each species and a comparative overview of key insights obtained from genomic analysis. We then consider current trends and future challenges associated with the study of fungal pathogenicity.


Assuntos
Cromossomos Fúngicos , Fungos/genética , Fungos/patogenicidade , Genoma Fúngico , Fungos/metabolismo , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Metabolismo Secundário , Virulência
2.
Environ Microbiol ; 16(7): 2253-66, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24119086

RESUMO

Carboxamide fungicides target succinate dehydrogenase (SDH). Recent field monitoring studies have identified Botrytis cinerea isolates resistant to one or several SDH inhibitors (SDHIs) with amino acid substitutions in the SDH B subunit. We confirmed, by site-directed mutagenesis of the sdhB gene, that each of the mutations identified in field strains conferred resistance to boscalid in B.cinerea, and in some cases cross-resistance to other SDHIs (fluopyram, carboxin). Enzyme inhibition studies showed that the studied modifications (SdhB_P225T/L/F, N230I, H272Y/R/L) affected the inhibition of SDH activity by SDHIs, directly contributing to resistance. Our results confirm the importance of H272, P225 and N230 for carboxamide binding. Modifications of P225 and N230 conferred resistance to the four carboxamides tested (boscalid, fluopyram, carboxin, bixafen). Modifications of H272 had differential effects on the susceptibility of SDH to SDHIs. SdhB(H272L) , affected susceptibility to all SDHIs, SdhB(H272R) conferred resistance to all SDHIs tested except fluopyram, and SdhB(H272Y) conferred fluopyram hypersensitivity. Affinity-binding studies with radiolabelled fluopyram revealed strong correlations among the affinity of SDHIs for SDH, SDH inhibition and in vivo growth inhibition in the wild type. The sdhB(H272Y) mutation did not affect SDH and respiration activities, whereas all the other mutations affected respiration by decreasing SDH activity.


Assuntos
Botrytis/genética , Proteínas Fúngicas/genética , Subunidades Proteicas/genética , Succinato Desidrogenase/genética , Substituição de Aminoácidos , Benzamidas , Compostos de Bifenilo , Botrytis/efeitos dos fármacos , Botrytis/enzimologia , Carboxina , Farmacorresistência Fúngica/genética , Inibidores Enzimáticos , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Fungicidas Industriais , Mutagênese Sítio-Dirigida , Niacinamida/análogos & derivados , Ligação Proteica , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo , Piridinas , Relação Estrutura-Atividade , Succinato Desidrogenase/química , Succinato Desidrogenase/metabolismo
3.
Plant Cell ; 17(3): 987-99, 2005 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-15722464

RESUMO

Plants treated with the nonprotein amino acid beta-aminobutyric acid (BABA) develop an enhanced capacity to resist biotic and abiotic stresses. This BABA-induced resistance (BABA-IR) is associated with an augmented capacity to express basal defense responses, a phenomenon known as priming. Based on the observation that high amounts of BABA induce sterility in Arabidopsis thaliana, a mutagenesis screen was performed to select mutants impaired in BABA-induced sterility (ibs). Here, we report the isolation and subsequent characterization of three T-DNA-tagged ibs mutants. Mutant ibs1 is affected in a cyclin-dependent kinase-like protein, and ibs2 is defective in AtSAC1b encoding a polyphosphoinositide phosphatase. Mutant ibs3 is affected in the regulation of the ABA1 gene encoding the abscisic acid (ABA) biosynthetic enzyme zeaxanthin epoxidase. To elucidate the function of the three IBS genes in plant resistance, the mutants were tested for BABA-IR against the bacterium Pseudomonas syringae pv tomato, the oomycete Hyaloperonospora parasitica, and BABA-induced tolerance to salt. All three ibs mutants were compromised in BABA-IR against H. parasitica, although to a different extent. Whereas ibs1 was reduced in priming for salicylate (SA)-dependent trailing necrosis, mutants ibs2 and ibs3 were affected in the priming for callose deposition. Only ibs1 failed to express BABA-IR against P. syringae, which coincided with a defect in priming for SA-inducible PR-1 gene expression. By contrast, ibs2 and ibs3 showed reduced BABA-induced tolerance to salt, which correlated with an affected priming for ABA-inducible gene expression. For all three ibs alleles, the defects in BABA-induced sterility and BABA-induced protection against P. syringae, H. parasitica, and salt could be confirmed in independent mutants. The data presented here introduce three novel regulatory genes involved in priming for different defense responses.


Assuntos
Aminobutiratos/farmacologia , Arabidopsis/efeitos dos fármacos , Alelos , Sequência de Aminoácidos , Arabidopsis/genética , Arabidopsis/fisiologia , Sequência de Bases , Quinases Ciclina-Dependentes/genética , Quinases Ciclina-Dependentes/metabolismo , DNA Bacteriano/genética , DNA de Plantas/genética , Resistência a Medicamentos/genética , Genes de Plantas , Genes Reguladores , Modelos Biológicos , Dados de Sequência Molecular , Mutação , Oomicetos/patogenicidade , Pressão Osmótica , Oxirredutases/genética , Oxirredutases/metabolismo , Monoéster Fosfórico Hidrolases/genética , Monoéster Fosfórico Hidrolases/metabolismo , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Plantas Geneticamente Modificadas , Pseudomonas syringae/patogenicidade , Homologia de Sequência de Aminoácidos , Cloreto de Sódio
4.
Plant Mol Biol ; 52(3): 495-509, 2003 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-12956522

RESUMO

The tobacco gene encoding caffeic acid-O-methyltransferase of class II (COMT II) was isolated, including a 1.7 kb 5'-flanking region. Sequence motifs were identified in COMT II gene promoter which are present in many genes of the phenylpropanoid pathway or in stress-inducible pathogenesis-related (PR) genes. A 1215 bp COMT II promoter fragment was transcriptionally fused to the GUS coding region and its activity pattern studied by stable expression of the fusion gene in tobacco. Transgenic lines were analysed for GUS and OMT activities upon infection, UV irradiation, wounding and treatment by various signalling compounds. The promoter proved responsive to various biotic and abiotic elicitors and to infection by avirulent and virulent pathogens. During the course of the hypersensitive reaction of tobacco to TMV two peaks were detected, an early one induced by the inoculation process and a second one at the onset of lesion formation. Parallel changes were observed between GUS activity that reflected the activity of the COMT II promoter fragment and COMT II activity that mirrored expression of the endogenous COMT II gene, indicating that COMT II pattern of expression is established at the transcriptional level. Various promoter fragments were fused to the GUS gene and revealed that gene induction by MeJA or UV and by TMV or wounding requires different sequences included in a 74 bp fragment. When the 74 bp sequence was multimerized and inserted ahead of the CaMV 35S RNA minimal promoter, one construct was shown to be capable of driving expression of the reporter gene around the TMV-infected sites in transgenic tobacco plants.


Assuntos
Genes de Plantas/genética , Metiltransferases/genética , Nicotiana/genética , Acetatos/farmacologia , Sequência de Bases , Ciclopentanos/farmacologia , DNA de Plantas/química , DNA de Plantas/genética , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Regulação Enzimológica da Expressão Gênica/efeitos da radiação , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/efeitos da radiação , Glucuronidase/genética , Glucuronidase/metabolismo , Dados de Sequência Molecular , Oxilipinas , Reguladores de Crescimento de Plantas/farmacologia , Plantas Geneticamente Modificadas , Regiões Promotoras Genéticas/genética , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Análise de Sequência de DNA , Estresse Mecânico , Nicotiana/enzimologia , Nicotiana/virologia , Vírus do Mosaico do Tabaco/crescimento & desenvolvimento , Ativação Transcricional , Raios Ultravioleta
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...